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Field-induced drift and trapping in percolation networks 
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Department of Physics and Baker Laboratory, Cornell University, Ithaca, NY 14853, USA 

Received 10 April 1984 

Abstract. We study the effects of a bias-producing external field on a random walk on the 
infinite cluster in the percolation problem. There are two competing physical effects (drift 
and trapping) which result in a drift velocity U which rises and then falls as the field 
increases. We study these effects on a one-dimensional lattice with random-length branches, 
and on the diluted Bethe lattice. We calculate U in the first model with a maximum allowed 
length for each branch. In the limit that this cutoff length becomes infinite, we find that 
the velocity vanishes identically above a finite critical value of the field. For the Bethe 
lattice, we derive an upper bound on the critical field, which varies as ( p - ~ , ) ” ~  as the 
percolation concentration p c  is approached. In the one-dimensional model, we also investi- 
gate the anomalous regime in which the velocity vanishes. We discuss the distribution of 
steady state times required to traverse N sites, and find that it can be described in terms 
of a stable distribution of index x with superimposed oscillations. The index x of the 
stable distribution is given by L / [  where [ is a characteristic branch length and L is a 
bias-induced length which describes the exponential buildup of the steady state density of 
particles towards the end of a branch. 

1. Introduction 

The problem of a random walker in an infinite percolation cluster-the ‘ant in the 
labyrinth’ (de Gennes 1976)-is of great current interest, and a good deal is known 
not only about the behaviour at very long times, but also about the crossover that 
occurs when the typical distance traversed matches the correlation length (Gefen et al 
1983, Pandey er ai 1984). Also very interesting, but not nearly as well understood, is 
the effect of an external field which produces a bias in the random walk, making the 
ant more likely to step along the field than against it. The bias has a dual effect: it 
induces drift in the direction of the field, but also creates traps, such as in dead-end 
branches, to escape from which the ant must move against the field. In the large-field 
limit in which the ant is not allowed to step against the field, there is no macroscopic 
drift (Vicsek er al 1982). Thus one finds (Bottger and Bryskin 1982, Barma and Dhar 
1983, Pandey 1984) that the dirft velocity U is not a monotonic function of the bais 
(as it is for a non-random medium). Monte Carlo simulations (Pandey 1984) show 
that the average distance moved by the ant in a given time is a non-monotonic function 
of the bias. Furthermore, it has been argued (Barma and Dhar 1983\ that the drift 
velocity vanishes once the bias exceeds a finite threshold value. Dhar (1984) has argued 
that when U = 0, the typical distance covered by a particle grows as a power of the 
time with an exponent less than unity. 

t On leave from Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India. 
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Figure 1. ( a )  Part of the infinite percolation cluster. Two types of traps are shown: a 
branch predominantly in the direction of the field, and a backbend in the backbone. ( b )  
The random comb: a diffusing particle may be trapped in the branches of random lengths 
for a long time. 

In this paper, we study two models which exhibit field-induced trapping. The first 
model is one-dimensional in character, and illustrates how the trapping mechanism 
works. It is defined on a 'random comb' (figure 1) which consists of a one-dimensional 
lattice with random length branches, with a maximum allowable length M for each 
branch. We calculate the drift velocity as a function of the bias, and in the limit 
M + 00, we find that the velocity U vanishes above a finite critical value of the field. 
We also study the distribution, over the ensemble of combs, of steady state times 
required to traverse a given length of the comb. In the anomalous U = 0 regime, we 
find that this distribution can be described in terms of the stable distribution with 
index x < 1 (Feller 1971), but with superimposed oscillations. The index x is given 
by the ratio L ( g ) / t  of the two fundamental lengths in the problem. The length 5 enters 
into the distribution of branch lengths ( l ) ,  whereas L ( g )  is a bias-induced length, 
defined in ( 1  l ) ,  which describes the exponential buildup of the steady state density of 
particles towards the end of a branch. 

The second model we consider is that of a biased random walk on a randomly 
diluted Bethe lattice (0 3) .  In this case, we cannot solve explicitly for U, but we do 
find that branch trapping causes the drift velocity to vanish once the field exceeds a 
finite value which depends on the concentration of sites p .  This upper bound on the 
critical field vanishes as ( p  -PJ ' '~  as p approaches the percolation concentration p c .  

An anomalous regime in which the drift velocity U vanishes has been found in 
other models too. Scher and Montroll (1975) and Shlesinger (1974) have discussed 
transport in the context of continuous time random walks with a distribution of pausing 
times. If this distribution decays as a slow power law, one finds that U = 0. Another 
model which exhibits an anomalous regime consists of a chain in which the direction 
of bias of each bond is a random variable (Kesten et al 1975, Derrida 1983 and 
references therein). For sufficiently large values of the bias, one finds that the drift 
velocity vanishes. 

2. Branch trapping on a random comb 

The physical origin of the non-monotonic behaviour of the drift velocity in a biased 
random walk on an infinite percolation cluster is that the external field, in conjunction 
with the random geometry of the cluster, sets up traps in which the particle gets 
localised for a long time. These traps are of two sorts-branches off the backbone 
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which point predominantly along the field, and backbends in the backbone (those 
regions of the backbone from which a particle can escape only by travelling against 
the field). Both types of traps are illustrated in figure l ( a ) .  

Here we discuss branch trapping on a random comb, which is illustrated in figure 
l(b). It consists of a linear chain (the backbone) of sites evenly spaced a distance a 
apart. From each backbone site emanates a finite linear chain (a 'branch') of sites, 
also with spacing a. All branches are taken to run in the direction of the field, as is 
the backbone. Periodic boundary conditions are assumed for the backbone. We take 
the length I, of the branch attached to site i on the backbone to be a discrete, independent 
random variable distributed with probabilities 

In order to ensure that the system is finite, we have imposed a cutoff, Ma, on the 
maximum possible length of each branch, but we will eventually consider the limit 
M + m .  The random comb has some resemblance to a model discussed by Ziman 
(1979) in the context of the propagation of excitations on percolation networks, but 
there is a crucial difference: in the Ziman model, all branches have equal lengths, 
whereas in our case there is a finite probability of having any branch length from 0 
to Ma. It is the possibility of having indefinitely long branches in the limit M + 00 

which is responsible for the anomalous behaviour associated with the vanishing of the 
drift velocity. 

Consider a particular realisation R of the random comb, which we specify by the 
set of branch lengths I , ,  I,, . . . , I N .  We assume that a particle placed on any site of the 
random comb performs a random walk with the end of each branch acting like a 
reflecting barrier. The effect of the field is modeled as a bias in the random walk, 
making steps along the field more likely than against it. If U,( t )  is the probability that 
a particle is at site n at time t ,  we have 

where the summation runs over the nearest neighbours of site n. The transition 
probability per unit time W,,,, to hop from site m to site n is given by 

Wmn=W(l*g) ( 3 )  
where the bias g satisfies 0 s g < 1,  and the plus (minus) sign is for hops along (against) 
the direction of the field. Equation (2) can be rewritten in matrix form as 

(d/dt)lu(t;  R ) ) =  W ( R ) l u ( t ;  R ) ) .  (4) 

Here l u ( t ;  R ) )  denotes the column vector with entries U,(?) where n runs over all sites 
in realisation R of the random comb. Both the size and the entries of the matrix W(R) 
depend on the realisation R. The formal solution of (4) is 

( 5 )  

and can be used to find quantities of physical interest, which can then be averaged 
over all configurations R. For instance, the configuration averaged probability of being 
on site n of the backbone at time t is 

l u ( t ;  R ) )  = exp[W(R)tI lu(~;  RI) 
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where P ( R ) ,  the probability of occurrence of realisation R, is given by 

We have not obtained the full time-dependent solution embodied, for instance, in 
(6). Rather we have studied the properties of the system in the steady state. Since the 
system is finite and every site can be reached from every other, we expect that the 
steady state will be reached as t + m ,  irrespective of the initial conditions (Mathews 
et a1 1960). The steady state distribution of a set of non-interacting particles on the 
random comb is found by setting the left-hand side of (4) to zero. It is given, up to 
a multiplicative constant, by the components of the right eigenvector of W ( R )  corre- 
sponding to eigenvalue 0. 

Let pm be the steady state density at site m, i.e., the number of particles on that 
site in steady state. Note that pm is the product of the number of particles X in the 
system and the value of U, in the steady state. The net current flowing from site m 
to an adjacent site n is given by 

Jmn = W m n P m  - W n m p n .  (8) 

In steady state, the branches carry no current and hence have no effect on the density 
of the backbone. The periodic boundary conditions ensure that the backbone density 
po is the same at all backbone sites, and using (8) we find 

Po = J / 2  wg (9) 

where J is the current on the backbone. The density pI on a branch site at distance 1 
from the backbone is found, on setting J,, to zero for each link in the branch, to be 
given by 

(10) 

(11) 

/ l u g )  PI = Po e 
where L ( g )  is a new length introduced into the problem by the bias and is given by 

U g )  = a M ( l  + g ) / ( l  -g)l}-'. 

Let us define a steady state transit time for the N-site backbone associated with 
realisation R as 

(12) 

where X is, the total number of particles in the system and J is the backbone current. 
We expect T,(R)  to be the mean time of traversal of a particle through the system. 
We can see this as follows: imagine the backbone to be in the shape of a ring and 
consider the motion of a single particle on it. Let w (  t )  be the net number of traversals 
made by the particle in the direction of the field in time t. The mean traversal time is 
then 

(13) 

TN ( R ) = X /  J 

T N ( ~ )  = lim 1-cc t / w ( t ) .  

The contribution of this single particle to the mean current between two backbone 
sites is 

If there are K non-interacting particles, the mean current -7 is given by KTI. We thus 
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have 

T N ( R )  = x/J. 
If we assume the system is ergodic, we have j = J, and in that case T N ( R )  equals the 
mean traversal time T N ( ~ ) .  

Putting equations (9), (lo),  and (12) together we find 
N 

L ( R )  = C ti 
1 = 1  

where the sum is over backbone sites i and 

may be identified as the mean time spent by a particle on backbone site i and its 
associated branch of length I,. Using the probability distribution ( 1 )  we find that the 
configuration average of T N ( R )  is 

where the function GM(y)  is given by 

G M ( Y )  = ( 1  -Y)/(1 -yM+I) .  (19) 

VM NO/( T N )  (20) 

We define the drift velocity vM as 

and have plotted uM as a function of g in figure 2 for various values of the branch 
cutoff parameter M. As M +a, vM approaches a limiting form, which we denote by 
v. We find 

U = 2 Wga[l - exp( a / L (  g )  - a / ( ) ]  for L(g) 3 6 
= O  for L ( g )  s 6. (21 1 

, I . , ' , .  

1 0  

0 z 
Lzo 5 

0 0 05 01 0 15 0 2  
9 

Figure 2. The drift velocity uM measured in units of Wu of a particle on the random comb 
as a function of the bias g for various values of the branch cutoff length M, with 6 = 50.  
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Figure 3. Phase diagram for the random comb. The bold line separates the drift regime 
from the anomalous regime. Curves of constant U are shown in the former, as are curves 
of constant x in the latter. The units of ( and U are a and Wa, respectively. 

Contours of equal limiting velocity U in the (g, 6-l) plane are shown in figure 3 .  It is 
of interest to ask for the deviations of uM from U when M is large but finite. We find 
that as M + m ,  the difference is 

uM-u-exp[-(M +l)aIL-'(g)-.$-'l] if L(g) + 5 
- 1/M if L(g) = 6. (22) 

x = U)/& (23) 

Let us define x as the ratio of the two characteristic lengths in the problem 

In the limit of low bias ( g  + 0) with fixed x > 1, both L(g) and 5 diverge. The velocity 
can then be written in the scaling form 

u(L(g),  6) = wa35-2 Y(X) 

Y ( x )  = (x  - 1)/x2. 

(24) 

(25) 

where the scaling function Y ( x )  is given by 

Consider now the question of the distribution over the ensemble of combs R of 
steady state transit times TN(R) required by a particle to traverse the N-site backbone. 
This question is particularly interesting when x < 1, so that U = 0 and ( TN) diverges in 
the limit M + m .  Let us first address the question in a slightly different model, in 
which the lengths of the branches are allowed to take on continuous values with 
probability density 

i(l) = 6-1 e-'/c O s l s m  (26) 
where the tilde is used here and below to indicate continuous branch lengths. By using 
(17) and (26) and the relation @( t )  = i ( l )  d l l d t  it is straightforward to deduce the 
probability density for the branch steady state times ti. We find that 

P ( t i )  = 6x exp(a/6)(1 + l ~ t ~ ) - ' - ~  

6 = 4  Wg2( 1 - g)-', 

(2 wg)-l s ti < 03 (27) 

(28) 

where 6 is given by 
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The power law decay which characterises this density for large t ,  becomes slower as 
the bias is increased with 5 held fixed, since by (11) and (23), x decreases with g. 

The steady state transit time TN is the sum of N identically distributed variables 
ti, each described by the probability density (27). The behaviour of the probability 
distribution for TN in the limit N + CO has been studied for arbitrary p( t i )  in probability 
theory (Feller 1971, Gnedenko and Kolmogorov 1954). Provided certain necessary 
and sufficient conditions are satisfied (Feller 1971, p 312) and TN is rescaled by an 
appropriate function of N, one finds that the distribution approaches a well defined 
limiting form. The necessary conditions are, in fact, satisfied by the probability density 
(27), and one thus obtains a limiting form which depends on x. For x > 2, the variance 
u2 of the density (27) exists and the central limit theorem applies, with the result that 
as N + a, ( TN - N (  ti))/am is normally distributed. For x < 2, however, the variance 
diverges, and the distribution for TN is described in the limit N + m  by a stable 
distribution of index x (Feller 1971). As long as x exceeds unity, the law of large 
numbers holds and the density for T N / N  is sharply peaked around ( t i ) .  By contrast, 
once x falls below unity, the system enters an anomalous regime in which ( t , ) ,  and 
thus ( T N ) ,  diverges. In this case we have, in the limit N+co,  

p N (  T N )  = b( cN)-""P,( b T N / (  c N ) ' / " )  (29) 

c = r ( l  -x)exp(a/(). (30) 

where we have 

The stable distribution P,(y) is known in terms of simple functions only for x = 4, 
although it has the simple Laplace transform 

~ [ P x ( Y ) l =  exp(-s") (31) 
for all x < 1 (Feller 1971). It is interesting to note that the one-dimensional random 
bias model studied by Kesten et a1 (1975) has a distribution of traversal times which 
approaches a stable distribution. 

From (29) we see that the probability density eN( T N )  approaches a scaling function 
of TN and N. If we identify a 'typical' value T:, say by the location of the maximum 
of F N (  TN), we see from (29) that 

Tgcc NI/". (32) 
The 'typical' steady state time T: grows faster than linearly with N, consistent with 
the vanishing of the drift velocity. Curves of constant x in the ( g ,  ( - I )  plane are shown 
in figure 3 .  

Returning to the discrete density ( l ) ,  we note that its integrated probability distribu- 
tion coincides at all integer values with that of the continuous density (26). Thus we 
might expect the resulting probability density Phi( T N )  to be similar to p N (  T N ) .  But 
on using the theorem for the approach to a stable distribution (Feller 1971, p 312) we 
find that P N (  T N )  does not tend to a limiting distribution as N + 00. 

In order to investigate the failure of PN( T N )  to approach a stable distribution we 
have numerically determined the probability density PN( T N )  for several values of N 
and x. We used a Monte Carlo method in which many realisations R of the comb 
were generated according to ( l ) ,  and T N ( R )  calculated for each R, using (16) and 
(17). Figure 4 shows schematic results for x =$  and N = 6 4  and 512, along with the 
analytically known (Feller 1971, p 173) stable curve @ x = l / 2 ( T N ) .  The scale on the 
time axis for the N = 512 curve was matched with the analytic curve, while the time 
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Figure 4. The probability densities T N )  for traversal times on the random comb for 
N = 6 4  (----) and N = 5 1 2  ( . . . . . . )  are displayed for the case x = i ,  along with the 
corresponding stable density (-). The parameters L(g) and [ were 2 . 5 ~  and 5a, 
respectively. The horizontal scale for the N = 512 curve is 2.58 X lo6 and for the N = 64 
curve is 4.04 x lo4, in units of W - ' .  Each bump is labelled by the number of sites in the 
long branch which produces it. 

axis scale for N = 64 was taken to be the scale for N = 512 divided by (512/64)"" = 64. 
We see that the curves nearly coincide with the stable density, except that for fairly 
long times the probability density is concentrated in bumps, with the spacing between 
bumps growing roughly geometrically. Similar geometrically spaced oscillations have 
been found in the configuration-averaged mean displacement of a particle in a one- 
dimensional model considered by Bernasconi and Schneider ( 1982). We have been 
able to interpret each bump in figure 4 as arising from the presence, in some realisations, 
of a single very long branch of length 1 in which a particle spends a much longer time 
than in the rest of the system. This interpretation allows one to label each bump by 
1, as has been done in the figure. If t ( l )  is the mean time spent in a branch of length 
1, the shape of each bump is approximately given by PN-,( TN - t (  I ) )  times the probabil- 
ity of occurrence of a branch of length 1. The bumps shift inward on rescaling TN, 
and since the spacing between them increases geometrically, the number of bumps in 
any interval can at most fluctuate between two successive integers. 

Although we have not been able to find an explicit formula for the probability 
density PN( T N )  for discrete chains, we can derive bounds for the corresponding 
cumulative distribution FN( T N )  defined by 

To this end we note first that the discrete distribution of branch lengths (2) gives rise 
(in the limit M + a) to the cumulative distribution 

e ( l - m a )  (34) 
m = O  

where e(z)  is the step function. 

bility density (26) be f(I). We have 
Let the cumulative probability distribution corresponding to the continuous proba- 

j ( l )  = 1 -e-''C, O S l < C O .  (35) 
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Finally, let us define another cumulative distribution 

Then one can verify the relations 

f( I )  sf( I )  sy(  1) .  (37) 

Now (17) gives us a relation between 1 and t (we have dropped the subscript i for the 
present). Note that t is a monotonic function of 1, and so the mapping is invertible. 
Equation (17), in conjunction with (34), (35) and (36), can be used to deduce the 
corresponding cumulative distribution in terms of t, namely F (  t ) ,  i( t )  and fit( t ) .  
Explicitly, we have 

F ( t )  = f ( l ( t ) )  (38) 

E( t )  s F (  t )  == it( t ) .  (39) 

Now TN is the sum of N t,’s (equation 16), and (39) holds for each t , .  It then follows 
for the cumulative distribution functions for TN that 

etc. Consequently, on using (37), we find 

F N  ( TN 1 6 FN ( T N  1 6 T N  1. (40) 

Equation (40) provides fairly stringent bounds on F N (  T N )  because F N (  ~ T , / [ C N ] ” ~ )  
and F:IN(bTN/[I‘(l - x ) N ] ” ” )  tend to the same stable distribution as N+w. 

3. The Bethe lattice 

In the model of § 2 ,  the backbone and each branch were taken to be linear and  were 
only allowed to point along the field. Neither of these features is particularly realistic, 
and in this section we consider the problem on a diluted Bethe lattice (Fisher and  
Essam 1961). We will show that the drift velocity U vanishes above a threshold value 
of the bias, although we cannot solve explicitly for U when it is non-zero. 

At the outset, we must specify the ‘easy’ direction of hopping on each bond in the 
undiluted lattice. It might seem simplest to choose the easy direction to always point 
away from a particular root site (see figure 5 ( a ) ) ,  but this would lead to fewer incoming 
than outgoing directions at  every site. Except for briefly mentioning results for such 
a rooted model at the end of the section, we will consider an  assignment+ of directions 

IU I ibl 

Figure 5. Two possible choices for the ‘easy’ hopping direction on the bonds of a Bethe 
lattice. ( a )  The easy direction always points away from a particular root site (the larger 
dot). ( b )  At each site, the easy direction points into the site for half the bonds, and out 
for the other half. 

This construction was suggested by Dhar: see also Straley (1977) 
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which resembles that on a finite-dimensional lattice: on each site of a tree of even 
coordination number, say 2m, let the easy direction (the ‘down’ as opposed to the ‘up’ 
direction) point into the site for half the bounds, and out of the site the other half. 
For m = 2 (see figure 5 ( b ) ) ,  the tree resembles a square lattice locally (with the field 
along a diagonal), and for m = 3 a cubic lattice, (with the field along a body diagonal). 
A feature of this construction is that it allows one to define a (dimensionless) ‘vertical’ 
displacement r,, in the direction of the field. Explicitly, r,, is the number of up steps 
minus the number of down steps taken on the unique chain of sites connecting i to j .  

Now consider removing a fraction 1 - p  of the sites. Suppose p > p c =  1/(2m - 1) 
that there are infinite clusters (Fisher and Essam 1961). A point is said to be on the 
backbone of an infinite cluster if there are at least two non-overlapping paths connecting 
it to infinity. We define branches as follows: imagine removing all points of the 
backbone from the infinite cluster. One is left with finite, connected clusters of sites. 
Each such connected cluster is called a branch. An ‘up’ (‘down’) branch is one in 
which the first step from the backbone onto the branch is in the up (down) direction. 
Note that up to 2m - 2 branches may connect to the backbone at a particular backbone 
site. 

Let a current J be injected into a site on the backbone of the infinite cluster, and 
in the steady state be collected at all the sites at infinity. Suppose p, is the steady state 
number of particles on backbone site i to which is attached a branch p. Let us define 

by letting p& be the steady state number of particles in the branch. Note that JP 
must depend only on the configuration of the branch and the bias g. In the steady 
state no current flows through any bond in a branch. Thus, if j and j ’  are adjacent 
branch sites, wi th j  abovej‘ ( r J l s =  - l ) ,  we obtain from (3) 

(41 1 p J  / p J  = eaIL(g) 

where L ( g )  was defined in ( 1  1). Hence, it follows that 

(42) f = 1 e-ar,JIL(g) 
1P 

I C P  

The key simplifying feature of the Bethe lattice is that the possible configurations 
of a particular branch depend only on whether it is an up or a down branch. Let (fJ 
be the average of be an indicator 
function which takes the value 1 if site j is part of branch p attached to the backbone 
at site i, and is zero otherwise. From (42) we have 

over all up (+) or down (-) branches. Let 

where j runs over all sites. We evaluate (f*) in the appendix by a transfer matrix 
method. The result is 

if gag, (44) =CO 

where go is the solution of A l ( g ) p [ Q ( p ) ] 2 “ - 2  = 1, and where the functions h , ( g ) ,  C : ( g )  
and Q ( p )  are defined in the appendix. 

The divergences of ( f + )  and (f-) when the bias g exceeds go imply that the 
branch-configuration averaged number of particles ~ , ( f ; ~ )  in a branch p attached to 
backbone site i is infinite. This in turn means that for g 3 go the average over branch 
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configurations of the steady state time spent on a backbone site and its branches is 
infinite, What this means for a particular realisation of the system is that a typical 
particle will spend a vanishing fraction of its time on the backbone. As for the random 
comb, we expect that g 5 go is an anomalous regime in which the drift velocity vanishes. 

If g ,  is the critical value of the bias g which signals the onset of the anomalous 
regime, then we have 8 , s  go. We expect g ,  = go, but cannot exclude the possibility 
that the average of pi over all backbone sites i diverges for yet lower values of the 
bias. It had been argued (Barma and Dhar 1983) that as p + p 0  the critical value of 
the bias g, is proportional to ( p - p , ) ’  where v is the standard correlation length 
exponent. For the Bethe lattice, we find that the upper bound go on the critical bias 
g, reduces, in the limit p + p, ,  to 

go = [( m - 1 )(2m - 1 )/2m] ( p - p,)”’. (45) 

If we take g, = go, this result is in accord with the prediction of Barma and Dhar, as 
one has v =; on the Bethe lattice (Straley 1982). 

To conclude this section, we mention results for a Bethe lattice model in which 
the easy direction always points away from a particular root site (figure 5( a ) ) .  In this 
case, the natural measure of the displacement between two sites is the number of bonds 
on the path connecting them, as opposed to the ‘vertical displacement’ rw With this 
choice, one has v = 1 (Straley 1982). The calculation for this model follows that in 
the appendix, except that it is not necessary to introduce a transfer matrix. We find 
that there is an anomalous regime above a critical value of the bias, as for the model 
discussed above, but in this case the upper bound on the critical field is proportional 
to ( p  -pJ, in contrast to ( p - pC)”*. 

4. Conclusions 

We have seen that the drift velocity vanishes above a critical value of the bias for two 
models of a random medium-the random comb (in the limit of the cutoff branch 
length M + CO), and the diluted Bethe lattice. For the random comb, which is essentially 
one-dimensional in character, we found that a central role is played by the ratio x of 
the bias induced length L ( g )  to the characteristic branch length 6. For x > 1, and in 
the limit L ( g ) ,  .$-,CO, the velocity U can be written in scaling form with x the argument 
of the scaling function. For x < 1, we find that the drift velocity vanishes and the 
distribution of steady-state transit times TN required to traverse N backbone sites is 
closely related to the stable probability distribution with index x. 

It should be noted that the characteristic behaviour we have seen for the random 
comb-a finite velocity regime followed by an anomalous v = 0 regime as the bias is 
increased-depends crucially on the exponential form for the distribution of branch 
lengths, p (  I )  a exp(-l/(). For instance, if we take p (  I )  cc exp[-( 1 / 5 ) ” ] ,  then for all 
values of g in the interval O < g < l ,  we find v = O  if O < a < l ,  while v # O  if a > l .  
The choice of our distribution (1) is motivated by our expectation that in the percolation 
problem, the probability that a site j is on a branch connected to the backbone at site 
i varies as exp(-r,,/&) for rIJ >> &, where 5, is the correlation length. We expect the 
behaviour of biased random walks on an infinite percolation cluster in dimensions 
d 2 2 to be qualitatively the same as for the random comb. In particular, if we define 
2 = L ( g ) / [ , ,  then we expect the velocity to scale as 

v = t ik  ?($). (46) 
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This should reduce to the linear response formula 

v = 2 D g  (47) 

as g + O .  Here D is the diffusion constant which vanishes as &('"''', where p and 
v are the usual percolation exponents describing the behaviour of the infinite cluster 
and correlation length, and r is the conductivity exponent (Kirkpatrick 1973). Matching 
(46) and (47) we find 

?($) - I / ?  as $-;,CO, (48) 

and 

k =  1 + ( t - P ) / v .  (49) 

Notice that linear response theory is valid only as long as [<< L ( g ) ,  a conclusion that 
was also reached by Ohtsuki and Keyes (1984). 

We have not discussed backbend trapping at all in this paper. A one-dimensional 
model of this phenomenon was discussed by Barma and Dhar (1983); in fact, their 
model reduces to that studied by Derrida (1983). But the problem on the backbone 
of an infinite percolation cluster still remains open. Another interesting problem 
concerns the effect of interactions between particles-they would affect our results 
considerably. Finally, the full time-dependent solution for the random comb, 
embodied, for example, in (6), remains to be found. 
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Note added in proot Recent Monte Carlo simulations (Seifert and Suessenbach 1984) of a biased random 
walk on two- and three-dimensional percolation networks ( p > p , )  seem to show that d(ln R)/d( ln  f )  is an 
oscillating function of r ,  where R is the average distance moved by a particle in time r. 

Appendix 

where i is a backbone site, j runs over all sites, and ( 7 1 ~ ~ )  gives the probability that site 
j is part of a given up (+) or down (-) branch p connected to the backbone at i. Let 
k be the nearest neighbour of site i which is on branch p. We say a s i te j  is a potential 
p-site if the unique chain of sites connecting j to i contains k. Then if j is not a 
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potential P-site, T~ = 0, while if j is a potential @-site, we have 

(7,j) = p N [ Q (  P ) I ~ ( ' ~ - ~ ) + '  (A21 

where p is the probability of occupation of a site, N is the number of bonds connecting 
i to j ,  and Q( p )  is the probability that all paths in a given direction from a site known 
to be occupied are finite. One finds Q ( p )  satisfies the equation (Essam 1972) 

Q ( P )  = 4 + P I Q ( P ) l Z " - ' .  (-43) 
Equation (A2) follows from the observation that ( T ~ )  is the probability that the N 
sites on the path from i to j are occupied, times the probability that none of the 
(2m - 2) N + 1 free directions around the chain of N sites leads to infinity. 

On the unique path from i to j ,  associate pseudospins with bonds: sk = +1 (sk = - 1) 
if the bond is traversed in the up (down) direction. Then 

N = C  Isk/ (A41 
k 

where k runs over the bonds linking i to j .  Now the + or - in (f,) just denotes the 
sign of sI. 

Given a sequence {sk} ,  starting from i ,  the location o f j  is not uniquely determined: 
at step k, there are m ways of having sk = $ - I ,  and ( m  - 1 )  ways of having sk = - . % - I .  

Thus (A1 ) becomes 

K,)= N = l  f P N [ Q ( P ) l N ' 2 m - Z ' + '  {s2 s,} 5' k = l  n(sk, S k t l )  exp(  -f 2 = 1  a s , / l ( g ) )  

where 

We can evaluate the right-hand side of (A6) by introducing the transfer matrix 

A , ( g )  = m cosh h * [ m 2  sinh' h + ( m  - 1)2]1'2. ('41 1) 
The + sign goes with n = 1. The matrix elements are given by 

( m  - l ) ( A ,  - e F h )  
2(A, - m cosh h ) ( A ,  - m e r h ) '  

C;  = 
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If p Q (  p)'"-*A, < 1 ,  the sum in (AlO) converges and we have 

S R White and M Barma 
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